the Energy to Lead

CSA NGV4.3 Temperature Compensation and Full Fills-

NGV Technology Forum

February 2018

Tony Lindsay, P.E.

Jason Stair

Gas Technology Institute

ESTABLISHED 1941

Gas Technology Institute Overview

Natural Gas Research and Development Focus

- > Staff of 300+
- > 350 active projects
- > 1,200 patents; 500 products

Energy & Environmental Technology Center

List of Topics

- >Recently Published CSA NGV4.3 Standard
 - Coverage
 - Usefulness
 - Next Phase
- >Discuss temperature compensation
- >Barriers/solutions to better vehicle fills CEC/SoCalGas Project
 - Controls/Algorithms
 - Gas Conditioning
 - Communications

New CSA NGV4.3 Standard

SOME THINGS ARE EASY....

SOME THINGS ARE NOT....

CSA NGV 4.3-2018

Temperature compensation guideline for compressed natural gas vehicle fueling

CSA NGV 4.3 IS NOW PUBLISHED!

CSA NGV4.3-2018 - Temperature Compensation Guideline

>What it is:

- Safety performance guideline to prevent dispensing systems from exceeding a safe fill level into NGV storage
- Used for assessing proper temperature compensation of in-service commercial dispensing systems
- Informs on natural **gas composition** variability impact

>What it is not:

- Not a listing standard to certify newly manufactured dispensers or fueling appliances
- Not a methodology on "how" to temperature compensate
- Not intended to constrain innovation or technology

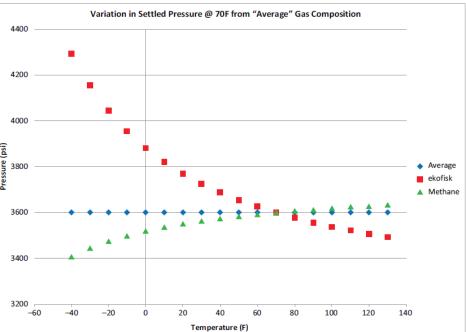
CSA NGV4.3-2018 - Content

- >Background Theory
- >Temperature/Pressure Tables
 - Relationships away from Standard conditions of
 - 3,600psig & 70F (24.82 MPa & 21C)
 - Safe limits for gas composition extremes
- >Test Equipment & Methods
- >Test Conditions
- >Informative Annex

CSA NGV4.3 Figures

 Table 1

 Gas temperature/settled pressure relationships — P36 service pressure (See Clauses 5.1, 5.3, 5.5, 6.2, and 6.4.)


	Pressure psi (kPa)	Pressure psi (kPa)		
1	Conservative Gas Composition	Nominal Gas Composition	Temperature °F (°C)	
	4,500 (31 026)*	4,500 (31 026)*	130 (54)	
	4,395 (30 302)	4,437 (30 592)	120 (49)	
4400	4,237 (29 213)	4,270 (29 441)	110 (43)	
	4,078 (28 117)	4,103 (28 289)	100 (38)	
4200	3,919 (27 021)	3,935 (27 131)	90 (32)	
	3,759 (25 917)	3,768 (25 979)	80 (27)	
	3,600 (24 821)†	3,600 (24 821)†	70 (21)	
4000	3,409 (23 504)	3,432 (23 663)	60 (16)	
(jsi	3,218 (22 187)	3,264 (22 504)	50 (10)	
Pressure (psi)	3,027 (20 870)	3,096 (22 346)	40 (4)	
Press	2,836 (19 554)	2,928 (20 188)	30 (-1)	
	2,646 (18 244)	2,760 (19 030)	20 (-7)	
3600	2,455 (16 927)	2,592 (17 871)	10 (-12)	
	2,266 (15 624)	2,424 (16 713)	0 (-18)	
3400	2,077 (14 320)	2,256 (15 555)	-10 (-23)	
	1,888 (13 017)	2,089 (14 403)	-20 (-29)	
	1,701 (11 728)	1,922 (13 252)	-30 (-34)	
3200	1,515 (10 446)	1,755 (12 100)	-40 (-40)	

Note: The maximum temperature of the vehicle container shall not exceed 85 °C (185 °F) per CSA NGV 2.

* Maximum allowable fill pressure regardless of ambient temperature.

+ Service pressure 24.82 MPa (3,600 psi) at 21 °C (70 °F).

Figure C.2 Variation in settled pressure (See Clauses 5.1, 5.3, 6.2, and 6.4.)

CSA NGV4.3-2018 - Practical Use

- Periodic safety checks by station owner/operators
- Commissioning into service criteria
- Baseline performance and trending data
- >Pass/fail criteria for future listing Standards

CSA NGV4.3-2018 - Next Phase

- >Expand scope of NGV4.3 to include test methodology for:
 - New dispenser certification test
 - Residential Fueling Appliances
 - Vehicle Fueling Appliances
- >Standardize on a

pressure/temperature testHave all other standards

reference NGV4.3 for TC

CNG Full Fill Project

>CEC, PIR-14-013

>Cofunding:

-SoCalGas, UTD, SMP

>TAC:

—ANGI, Agility, SoCalGas, NREL
>Goal:

-Improve CNG full fills

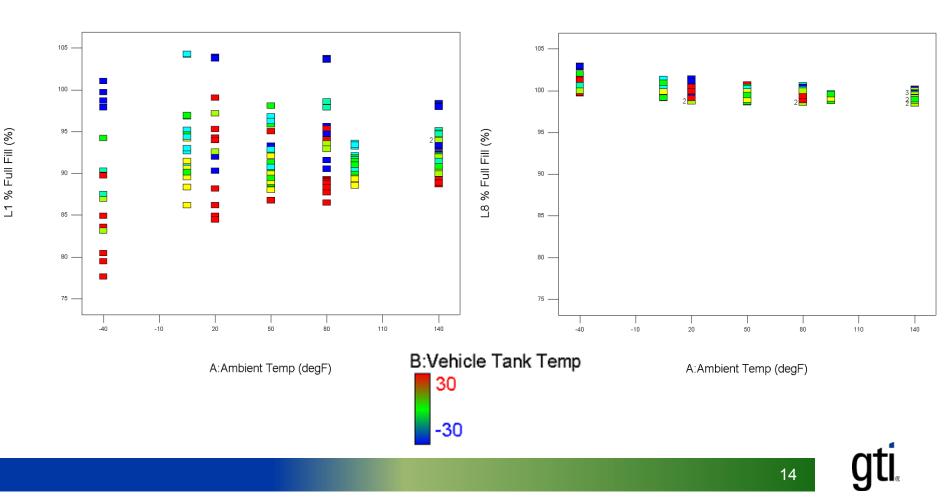
Project Focus

- >Fill simulation
- >Dispenser algorithms
- >Communication
- >Precooling
- >Testing

Fill Simulation

- >Matlab Simulink
- >Uses real gas properties from NIST Refprop
- Simulates cascade and direct fill scenarios
- >Coupled with design of experiments to run hundreds of cases that vary:
 - Starting pressure
 - Starting temperature
 - Tank size
 - Gas composition
 - Etc.

Dispenser Algorithm


- >Fill algorithm has significant impact on full fill and safety
- >Extremely challenging to develop accurate algorithm
 - Tank temperature, gas composition
- >Often tank pressure limit is reached before full fill
- >Mass algorithm issues
- Pressure and temperature based algorithm is likely best path forward at this time

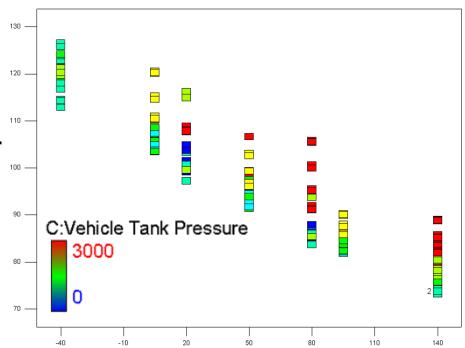
Simulation Example

Algorithm 1

Algorithm 8

Communication

- >CNG industry should consider vehicle/dispenser communication
- >Hydrogen industry requires IR communication
- >IR works, but requires hardware modifications
- >GTI investigating wireless communication protocols
- >Can be used to transmit pressure, temperature,
 - volume, tank type, tank expiration date, etc.
- >Could even track vehicle inspections



Precooling

>Necessary to achieve full fills above 20-30F

>Technologies:

- Traditional chiller
- Back pressure regulator
- CNG compressor as chiller
- Turboexpander
- >Alternatives:
 - Fill/Discharge cycles

A:Ambient Temp (degF)

Other recommendations

>Develop standard for CNG communication

- Commit to communication method
- Ensure safe, secure and accurate data transmission
- >Develop standard for dispenser algorithm
 - With and without communication
 - Makes dispenser certification easier
 - Moves risk away from manufacturers
 - Improves safety

Thank you!

Backup slides

Dispenser Improvement Opportunities

There are still several aspects of vehicle and dispenser design which could be modified to further improve the fueling experience.

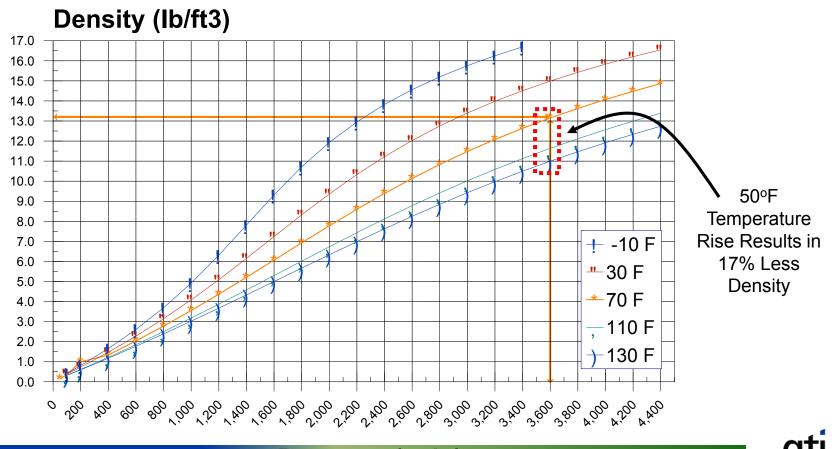
- > Change the tank design and/or modify the code to eliminate the 4500 PSIG restriction
- > Inject cool gas into the cylinder (at temperatures below ambient)
- > Improve algorithms
 - Incorporate validated heat of compression factors that properly account for temperature of injected gas etc.
 - Eliminate calculation errors
 - Reduce instrumentation error
- > Further reduce hydraulic losses in the hose components and on the vehicle

Additional Equipment Improvement Opportunities

- Select the appropriate dispenser design based upon the fueling application
- > Reduce the hydraulic losses within the dispenser and hose assemblies by utilizing high flow, low pressure drop components; ANGI has standardized on full flow activated ball valves and tubing with a minimum 1" diameter
- Incorporate the appropriate fueling strategy & algorithm.
 Percentage of fill before reaching vehicle limitations is affected by the following
 - Initial vehicle tank pressure
 - Tank PRV set point
 - Heat of compression & ambient conditions
 - Hydraulic losses in filling circuit (dispenser & vehicle)

Valve Panels

Compressor

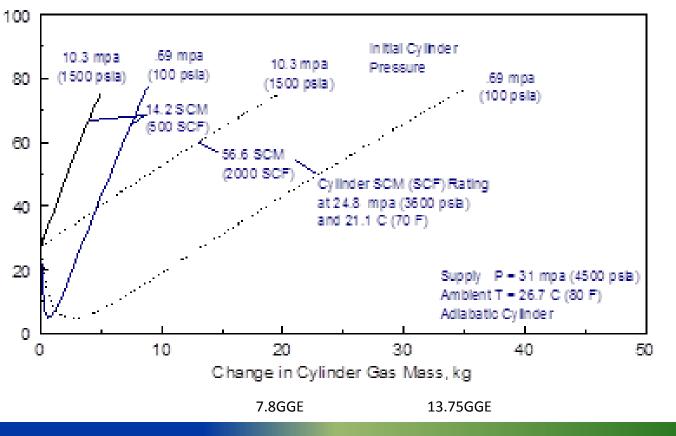

Site & Vehicles

Potential Solutions

- Pre cooling gas before the gas enters the vehicle. (Expensive and high maintenance)
- Redundant pressure transducers in the dispenser to provide a more precise measurement of the filling process.
- Raising the relief valve pressure in the dispenser to 5000 psi.
- Tank manufactures using realistic numbers and volumetric numbers that account for the limitations of the technology today. (Useable volume)
- Establishing an industry protocol to measure internal tank pressure and temperature when available.

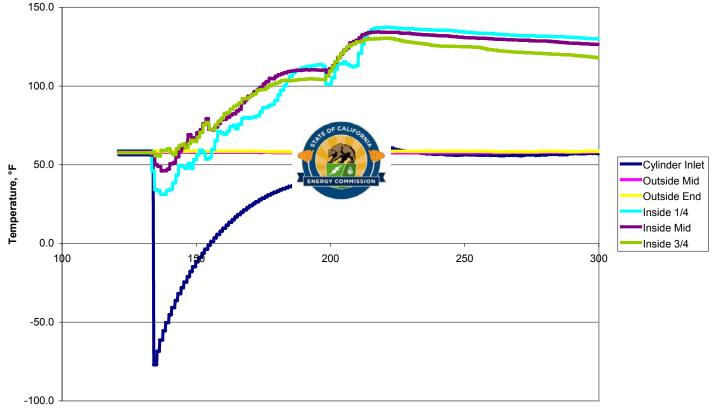
Example: Natural Gas

NGV Fuel Storage Characteristics



Pressure (psig)

Example: Natural Gas


Cylinder temperature is a function of the change in injected gas mass, initial pressure, and cylinder volume

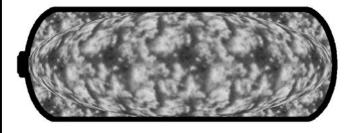
Cylinder Temperature, C

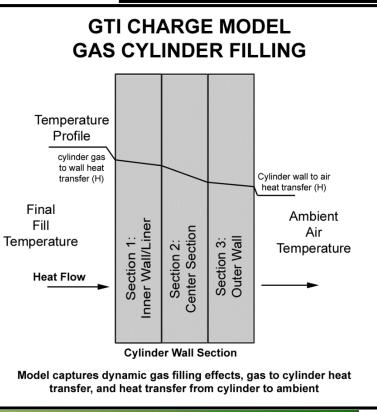
When it comes to Temperature....location matters

Example: Type 2 (Steel) – Natural Gas (3000 psig fill pressure)

Time, seconds

GTI CHARGE Model


> Modeling Tool


- Characterizes Dynamic Fast-Fill Process
- > Assess Cylinders of Different Size & Construction
- > Various Starting & Ending Fill Conditions
 - Cylinders
 - Ground Storage
- > Used To Create Dispenser Filling Algorithms

GTI CHARGE Gas Cylinder Filling Model

First Principle Thermodynamic Model

Addresses in-cylinder gas dynamics and heat transfer phenonmena

GTI CNG AccuFill® Algorithm

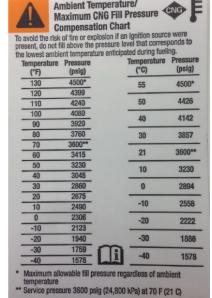
- > GTI developed & patented technology to address CNG temperature rise during mid-1990s
- > Technology licensed to several worldwide manufacturers, but not integrated
- > Provides more consistent fill performance over wide range of ambient conditions
- > Tech Transfer to Commercial Dispenser(s) Design Needed.

E. Lin, Liberyvikh, Cheinagher F. Biasky, Thio Hills, of O B. Bandy, Thio Hills, of O B. (2) Angl. No. 573,085 (2) Fibri Jan. 15, 1997 Belend U.S. Application Buts [2] Drivins of the So. 410,071, Mar. 21, 1996, [3] Drivins of the So. 410,071, Mar. 21, 1996, [3] Drivins of the So. 410,071, Mar. 21, 1996, [3] U.S. Cl. T. [31, 10, Cl. T. [32, Cl. T. [32, Cl. T. [33, 21, 22, 23, 23, 23, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25	[43] Date of Patent [37] AIRTI A section and approximation for a starting provides of pilotic of The named gas dispersing, income and inspection, pro- ground and inspection, and in granulation and a dispersion, for maximum the protons we be a parallel more a transpection, many flow mester for measuring unkides (related, Each transfer cention a data signal to a const off affection compressed pro- well on excitation gives a more well as excitation gas a more and pilotic The constraint process.	EACT ispensing natural gas into a motor vubidat in disch- cysten industes a pro- termination for measuring activity, of the supply ga- avaned presents transf- ibilit the natural gas vol- tame transformer transform at the dispensing site, a dispective which auto our and the mass flow m our to the mass flow m our so the vubide cylinde on to the vubide cylinde
COMPRESSED NOTHER.4. GAS [23] Investor: K. monds J. Konzy, P. Kalas, Historytky, Chelsshapher, F. Bas, Bistorytky, Chelsshapher, F. Bassak, Falos Hills, eff of B. [24] Avaigan: Gas Bosarch Instance, Chelsshapher, F. [25] Avaigan: Gas Bosarch Instance, Chelsshapher, F. [26] Hind. Jane, B, 197 [27] Heind. Jane, B, 197 [28] Dreiss of Ins. St. 610/01, Mar. 20, 1996. [29] Dreiss of Ins. St. 610/01, Mar. 20, 1996. [20] Dreiss of Ins. St. 610/01, Mar. 20, 1996. [21] Breid, Jane, DA, 1910. Phys. 101.09, 110.09	A method and apparenties for al- manual gas vehicle optimizer of the national gas observing, themelow end the national gas observations, response is a passed toward a dispersion, or provide a strangentier of the meaning the presence we optimize, an ambient at temperatures mays flow meter for meaning the statistic strates. Each transfer centre is data signal to a count off affectives compressed a well on excercision process.	Inpressing material gas into a motor vehicle is disach system includes a pros- transfactor for maximum netivoly, of the samply ga- netized system transf inhim the natural gas vei inhim the natural gas vei inhim the natural gas vei in the dispersion for ma- the gas mass injoccul in the gas mass from a or and the most flow may for gas mass injoccul in a to the vehicle cylinde
E. Lins, Lineryviki, Christopher F. Black, Phile Hills, el of Bl. [73] Assigner: Gas Research Institute, Chicago, Bl. [74] Appl. No. 573,885 [75] Field Jans, BJ, 1997 Beller U.S. Appl. Solution [76] Biolite OS, Application Bata [87] Ginshier of Ins. No. 610 ,91,910, 210, 211, 211, 211, 211, 211, 211, 2	natural gas vehicle optimizer of The national gas disquering, humdhowr and a longeration; prevenue and lengenation; coup à in parent locatad a disquerate, for measuring the generators we optimize, an authout air temperators, man flow meter for measuring vehicle optimizer. Each transvel cubit data signal to a contro cubit data signal to a control primer.	a motor websile is duels a system includes a prev- transface for maximum maximum, of the supply go- nation of the supply go- rature transitions for mo- trans transitions for mo- trans the disponent pro- ting gamma dispond in the gamma from form on any non-form form on the gamma from the system of processor which anton as to the websile cylinde so to the part most injectual in the gamma from the system of the system of the system of the system of the system of the system of the system of the system
[21] Appl. Nov. 575,088 [22] Wind: Jam. 16, 1077 Helmin U.S. Application Pata [33] Bark C.C.* [34] Bark C.C.* [35] Bark C.C.* [36] Bark C.C.* [36] Bark C.C.* [36] Bark C.C.* [37] Bark C.C.* [38] Bark C.C.* [39] Bark C.C.* [30] Bark C.C.* [30] Bark C.C.* [31] Bark C.C.* [32] Bark J.C. Son, D.G. Son, J.C. Son, J. So	It is parentl toward a disponse, for maximing the pressure of cylindre, an ambient air temper- ing ambient air semperatures mass flow meter for measuring vehicle cylindre. Each tareadu cuilty disputses compressed go- well as exectinating the amount cylindre. The control process	a second proster transf ithin the network gets to ratuse transfusor for me at the disponsing site, a the gas mass injected into cor and the mass flow a il processer which auto- ns to the vehicle cylinde to fgas mass injected into
Pind Jan. 18, 1997 Beleicid U.S. Application Data [2] Driving Thu So. 61070, 561, 31, 1998. [3] Bat. CL ² ————————————————————————————————————	cylinks; an inthiot sir tampo ing ambient alt temperatures mass flow meter for measuring while cylinds. Each transdu- entits a data signal to a conto cully dispense compressed go well as executiviting the amount splinds: The control process	rature transducer for me at the dispensing site, a the gas mass injected into cer and the mass flow or il processor which anto is to the vehicle cylinde t of gas mass injected into
Holmal U.S., Application Data [21] Discussion of the Site (SUC) Mile 20, 1990. [22] Las, C.L. HERDS, 14(2), 14(4),	ing ambient air temperatures mass flow mater for measuring vehicle cylinder. Each transdu- culty dispenses compressed go- well so reactimizing the amount cylinder. The control process	at the dispensing site, a the gas-mass injected into cer and the mass flow n il processor which autor as to the vehicle cylinde t of gas mass injected into
E2] Division of Ins. No. 610,973, Mar. 20, 1996. S1] Bat. C.L [*] B600 1029, B600, H62, H63, M52, S23, S23, S23, S24, S24, S24, S24, S24, S24, S24, S24	vehicle cylinder. Each transdu- emits a data signal to a contro- culty dispenses compressed ga- well as maximizing the amount cylinder. The control process	our and the mass flow n il processor which autor as to the vehicle cylinde t of gas mass injected into
Bits DefB DefB DefB DefB Addition [31] BLS, CL HEBMS, 14(2), 14(3), 1	cally dispenses compressed go well as maximizing the amount cylinder. The control process	is to the vehicle cylink t of gas mass injected int
[32] U.S.C. HH30, 1412, 1414, 141105, 14105, 14104, 14151, 14117, 14151, 14117, [39] Field of Search 1417, 4151, 14117, [40] Field (H40, 45, 312, 42, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45	well as maximizing the amount cylinder. The control process	t of gas mass injected int
U.S. PATENT DOCUMENTS 4.277-08 7990 Filter of d	compresses gas injected into a ing a first mass of compress calculating a first volume ar estimating a second mass of co	he vehicle cylinder by in of gas into the cylinder stimute in response the
4,577,600 7,7980 Fisher et al	the cylinder to a first prodet	emined fill state, and
4,086,277 27990 Code et al. 14130 4,086,281 10790 Banaran et al. 14130 5,025,623 3,7990 Matan et al. 14140 5,025,624 10790 Mallor et al. 1444 5,314,278 107904 Mallor et al. 1444 5,315,730 12,990 Mac 141. 1455 5,185,750 12,990 Mac 141.	estimating a third mass of com- nelizunce gas cylinder to the fi-	
5,400,086 47,909 Swisson et al	response therets. The reaffer, the gas is signated into the cylinder into the cylinder from the init well as the pressure of the container recentling from the inj being measured, where upon the a second volume of the gas of thereaffer, the second processes a final BI may to complete the cylinder, or more perform a second	e second mass of compare, the gas mass bring high fail start being measure compares of gas within socion of the second gas a control processor with real target and processor in target to second the other per- tage to used in other per- a gas mass injection into accuracy in determining accuracy in determining.
Astorney, Agent, or Firm-Thomas, Kaydon, Horstomeyer - & Risley, LLP.	to the fitted KI step for greater volume during the KI process	

		an samely re-			
	Unite Kountz	d States Patent et al.	(10) Patent No.: US 7,059,364 B2 (45) Date of Patent: Jun. 13, 2006		
(54)	CONTROL METHOD FOR INGR-PRESSURE HYDROGEN VEHICLE FUELING STATION DISPENSERS		(52) U.S. CL 14134; 14135; 14135; (53) Field of Classification Search 141137 (44) 18, 30, 30, 40, 40, 51, 82, 33, 197; 22221466 14125		
(75)	Inventors:	Kenneth John Kountz, Polotine, IL (US); Kenneth Robert Kriba, New	See application file for complete search history.		
		Lenox, IL (US); William E. Liw, Libertyville, IL (US)	(56) References Cited U.S. PATENT DOCUMENTS		
(73)	Assigner:	Gas Technology Institute, Des Plaines, IL (US)	5,365,981 A. * 1013934 Peachlas et al		
(*)	Notice:	Subject to any disclaimer, the term of this potent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.	5,771,947 A 61998 Knutte et al. 5,771,948 A 61998 Knutte et al. 5,870,058 A 91998 Knutte et al. 6,786,245 B1* 92004 Escheberger et al		
(21)	Appl. No.	10/911,938	* cited by examiner		
	Filed	Aug. 5, 2884	Primary Examiner—Timothy L. Manat (74) Atorney: Agent, or Firm—Mark E. Fejer		
(65)	US 2005/0	Prior Publication Data 0178463 A1 Aug. 18, 2005	(57) ABSTRACT		
(50)	Related U.S. Application Data Provisional application No. 60/543,815, filled on Feb. 12, 2004.		A method for quick filling a vehicle hydrogen storage vess with hydrogen, the key component of which is an algorith used to control the fill process, which interacts with t		
(51)			hydrogen dispensing apportus to determine the vehicle hydrogen storage vessel capacity. 3 Claims, 9 Deuwing Shoets		

Pressure related to fuel composition

- Sas composition impacts temp comp. Usi cleat pressure
- > GM chart uses pressure limits for worst case conditions


Difficulties on mandating max. settled pressures

> Temp comp. vehicle gauge could help

Temperature Compensated Fill Chart

DMP. Using two "extreme" Natural Gas available/measured compositions – one cleaner (> 97 mol% CH_4) and the other with ~ 75 mol% CH_4

nperature	Pressure	Density	Temperature	Pressure	Density
(°F)	(psia)	(g/cm³)	(°F)	(psia)	(g/cm³)
130	4558.7	0.197	130	4709.7	0.247
120	4399.4	0.197	120	4525.1	0.247
110	4239.9	0.197	110	4340.4	0.247
100	4080.2	0.197	100	4155.4	0.247
90	3920.2	0.197	90	3970.4	0.247
80	3760.2	0.197	80	3785.3	0.247
70	3600	0.197	70	3600	0.247
60	3439.5	0.197	60	3414.8	0.247
50	3279	0.197	50	3229.6	0.247
40	3118.3	0.197	40	3044.5	0.247
30	2957.6	0.197	30	2859.5	0.247
20	2796.9	0.197	20	2674.8	0.247
10	2636.1	0.197	10	2490.4	0.247
0	2475.3	0.197	0	2306.4	0.247
-10	2314.7	0.197	-10	2122.9	0.247
-20	2154.1	0.197	-20	1940.3	0.247
-30	1993.8	0.197	-30	1758.5	0.247
-40	1833.8	0.197	-40	1577.9	0.247

28

e Conservative approach : maximum allowable fill pressure corresponding to worst case scenario

5

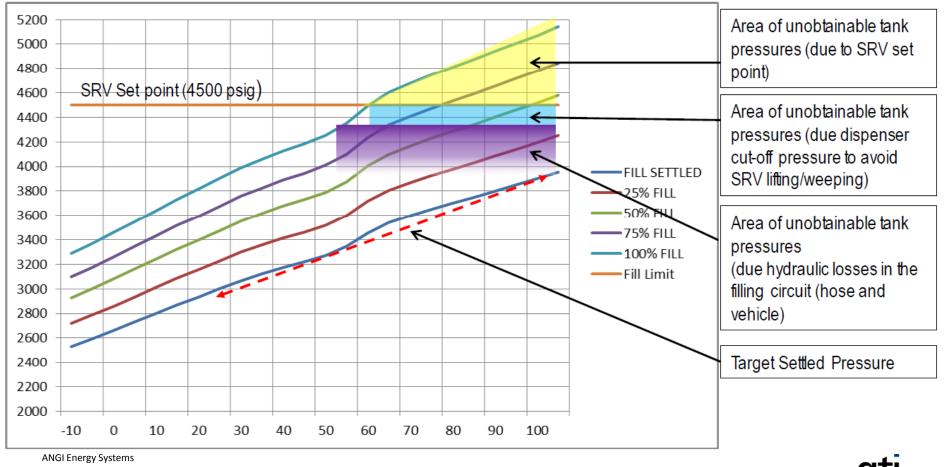
Anne Dailly and Richard Krentz. "Compressed natural gas temperature compensated pressure fill"

Defining the Impact

Significant under-filling affects major issues in the industry:

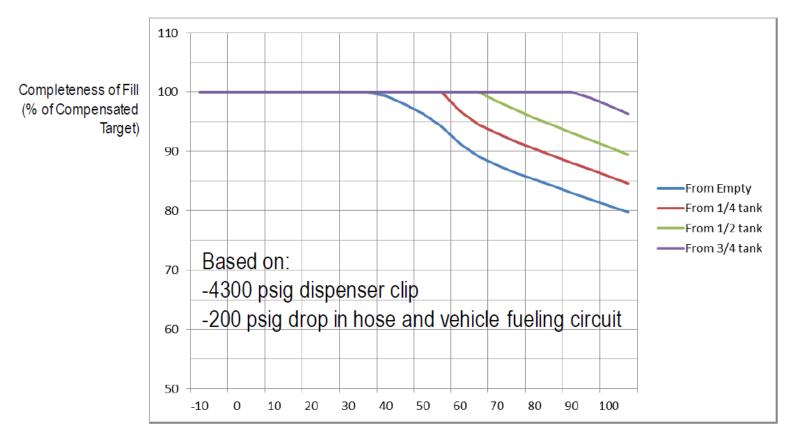
- Cost (up to 10% of conversion cost)
- Range (100's of miles 30 GGE "missing" on HD trucks with 150 GGE of storage)
- Weight/Space (critical for important markets)
- Fuel economy (impacts environmental, cost, and range concerns)
- Customer Satisfaction misunderstandings lead to bad experiences and disappointments

Primary Safety Concern: Temperature Compensation


- >Temperature Compensation: For a given gas composition, there is a constant density that equals 3600 psi at 70 °F (~0.21 g/cm³ for typ. NG)
- >Safety is primary concern-dispensers use of temperature compensation is important
 - Without compensation a fill can occur at high pressures in very cold conditions resulting in over-filling
 - CVEF white paper defines issue and best practices
 - Accountability and verification is key
- >CSA NGV 4.3 Tasked with addressing this issue
 - Initial topic: Defining settled pressure at various temps

Full-Fills: Optimized Temperature Compensation

- Temperature compensation is also important part of full-fill considerations but only one side of the issue
- >Maintaining safe limits for station and vehicle (i.e. preventing over-filling) while optimizing fill (i.e. reducing under-filling) presents significant challenges
- >Utilizing "target" stop pressure estimates without accounting for additional factors will not meet goals of safety and customer satisfaction


Barrier: Target Stopping Pressure

Target (End of Fill) Tank Pressures

Barrier: Target Stopping Pressure

Fill Completeness Forecast

ANGI Energy Systems

Ambient Temp. (deg F)

Achieving a Full-Fill

- >NGV4.3 provides settled pressure guideline, BUT
 >Dispenser control systems determine end-of-fill stopping target pressure (typically elevated pressure based on ambient temp and estimated settling)
- >Under many conditions fills do not reach "full" density
 - Sometimes 20% 30% less than optimal
- >Driver's perception of "full" is important
 - Pressure is a poor indication of "full"
 - Temperature compensated fuel gauge

Defining a Full-Fill

>Full-fill: 3600 psi (settled P) at 70 °F (settled T) >Temperature compensation: Correcting for pressure changes due to temp changes in the gas stored - "Full" Density: 1800 psi at -40°F and 4500 psi at 130°F >Heat of compression: Pressure rise causes temp in cylinder to rise quickly (makes fast-filling difficult) - Temporarily high T and P causes fueling procedure to stop with less than "full" density

Defining the Issues

 High ambient temperatures and amount of gas in cylinder are major contributors to under-filling

 Though many other factors influence final density

Industry direction is demanding better solutions

- Cylinders are larger (>150 GGEs on-board)
- Fills are getting faster (high flow dispensers)
- Success of industry leads to higher expectations (OEMs and very large fleets) and higher impacts for safety/reliability/consistency

>Safe fills are essential to industry growth

Full-Fills: System Design Parameters

>Safe operation demands code compliance (ANSI NGV2, NFPA 52, others)

>Major design parameters include:

- Max. settled pressure of 3600 psi at 70 °F
- Max. over-pressurization limit 125% = 4500 psi
- Max. temperature of cylinder during fill = 180 F
- Max. pressure relief in dispenser = 4500 psi (4300 psi, practically)
- Practical operations of station reduce available gas supply

Station Control Improvements

- >Several "solutions" do exist to improve fueling performance
- Start with dispenser controls/algorithms and then consider other strategies
- >CEC funded GTI under PON-14-502 Infrastructure Improvement Research for Natural Gas **Fueling Stations**
- >Major project partner: ANGI Cost Share: SoCalGas
- >Builds on past experience and successes Accufill mass-based fueling protocol

GTI's Current CEC Project

>The goals of the project are:

- Develop an advanced fueling control method (including initial characterization step)
- Design a test system that delivers improved fills
- Validate and quantify benefits
- Demonstrate improvements in cost-effectiveness and efficiency of fueling infrastructure and vehicle costs

>Looking at the issues that are in station's control (i.e. non-communications)

- Largest, most immediate impact for existing industry

GTI's Current CEC Project

- >Concern is that dispenser pressure tables alone are trying to solve a complex problem with a simple solution – lead to unacceptable under-filling
- >Calculation of internal energy based on variety of variables (known, calculated, and bounded)
- >Accurate control requires compensation for:
 - Initial cylinder gas pressure, temperature, composition
 - Initial station gas pressure, temperature, composition
 - Cylinder volume and thermal resistance (varies by type)
 - Flow rate of gas
 - Ambient Temperature

GTI's Current CEC Project

- Initial modeling has shown important parameters and consistent results with past testing
 - Simulink modeling to calculate internal energy in cylinder
- >Limited initial testing of baseline dispensers has shown that 20% under-filling occurs
- >Test data from large fleet has shown significant under-filling even when using customer controlled fill settings
- >Design of Experiments: evaluate all variables and quantify their importance
- >Continued modeling and testing over the next year

Potential "Solutions" (or at least advancements)

>Controls/Algorithm improvements

- Additional input/data/testing will be needed
- Potentially leads to standardized control process
- Station equipment improvements compressor, valve panels, dispensers
 - Improve hydraulic losses/pressure drops and improve flow, redundant pressure transducers to decrease error
- >Increase pressure limit on dispenser PRDs
 - PRD setting at ~5000 psi would allow stations to utilize existing gas pressure

Potential "Solutions" (or at least advancements)

- >Pre-cooling (i.e. heat exchanger/chiller to lower temperature of supply gas)
 - Done in some situations today; tied to optimized algorithm
 - Disadvantages include capital and operating costs
- >Communications (active or passive)
 - Cylinder volume, cylinder type, gas temperature, gas pressure from vehicle to dispenser would provide benefit
 - Disadvantages include existing vehicles, timing, etc.
- >Vehicle controlled fueling termination
 - Control valve stops fill based on vehicle pressure and temp
 - Control/liability passes to vehicle

Potential "Solutions" (or at least advancements)

>Vehicle cylinder type can improve heat removal/loss

- Type IV cylinder is great insulator
- All other cylinder types have better thermal properties (i.e. provide heat sink and increased conduction)
- Unclear how effective heat removal is during fast-fill and doesn't lead to industry wide solution
- >Improve "low-end" pressure limits
 - Minimum fuel rail pressure and supply regulator droop
 ~200 400 psi (5-10% "stranded" gas)
 - Engine/Injector operability limitations
 - Improved equipment on-board vehicle

>Additional improvements...